
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Touchscreen Gesture Recognition Using Cosine

Similarity

Buege Mahara Putra - 135230371

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1buege.putra@gmail.com, 13523037@std.stei.itb.ac.id

Abstract—Touchscreen gesture recognition is an integral

component of modern human-computer interaction, providing an

intuitive mechanism for executing commands on devices. This study

evaluates the feasibility of using a lightweight gesture recognition

system based on cosine similarity, offering an alternative to

computationally intensive machine learning models. The proposed

system preprocesses gesture images into binary grids, extracts feature

vectors by analyzing grid densities, and classifies gestures by

comparing feature vectors with template gestures using cosine

similarity. Extensive experimentation on varying grid sizes reveals

that mid-range configurations, such as 30 × 20, achieve optimal

accuracy of 78.57%. Despite the simplicity and computational

efficiency of the approach, the recognition accuracy remains

suboptimal for practical deployment.

Keywords—Cosine similarity, feature vectors, gesture recognition,

grid-based preprocessing

I. INTRODUCTION

The rapid development of touchscreen technology has

transformed how users interact with devices. Early touchscreen

systems, first seen in the 1960s and 1970s, were limited in

precision and responsiveness, primarily relying on resistive

touch technology. E. A. Johnson invented the first finger-driven

touchscreen in 1965 at the Royal Radar Establishment in

Malvern, United Kingdom. Johnson's work laid the foundation

for capacitive touchscreens, commonly used today in high-end

smartphones and tablets [1].

With advancements in capacitive touchscreens during the late

2000s, popularized by devices like the Apple iPhone, touch

interfaces became faster, more accurate, and capable of

supporting multi-touch gestures. This evolution paved the way

for the widespread adoption of touchscreen devices, making

gestures an indispensable tool for interaction across consumer,

industrial, and medical applications. As the technology matured,

the demand for efficient gesture recognition systems grew,

especially in areas requiring real-time performance and

adaptability to diverse user inputs.

Touchscreen gestures have become a fundamental component

of human-computer interaction, providing users with an

intuitive and efficient way to navigate systems and execute

commands. From swipes and taps to intricate gesture patterns,

this modality has become essential in devices such as

smartphones, tablets, and embedded systems. Despite the

widespread use of gesture-based interfaces, creating an effective

and reliable gesture recognition system remains a challenging

task. Variability in user input, environmental noise, and

differences in device sensitivity all contribute to the complexity

of the problem.

Many modern gesture recognition systems leverage machine

learning, particularly deep learning models, to achieve high

accuracy. While these methods excel in handling complex and

diverse input, they often come with significant computational

requirements and the need for extensive training datasets. This

makes them impractical for resource-constrained environments,

such as low-power embedded systems or real-time applications

with limited computational budgets. Consequently, there is a

need to explore simpler, more efficient methods that can balance

accuracy and computational cost.

In this paper, we explore the possibility of using a lightweight

gesture recognition system based on cosine similarity, a

straightforward measure of similarity between two vectors. Our

focus is not on introducing a novel algorithm but rather on

evaluating whether a simple, feature-based approach can serve

as an effective alternative to more complex machine learning

models. The goal is to understand how well such methods

perform under various conditions and to assess their potential

for real-world applications.

By focusing on simplicity, interpretability, and efficiency,

this study aims to provide insights into the trade-offs between

computational complexity and recognition accuracy. It seeks to

highlight the potential of classical methods for solving practical

problems, especially in scenarios where high computational

resources are unavailable or unnecessary.

II. THEORETICAL BASIS

A. Gestures

Gesture refers to a physical movement or position that

conveys meaning or intent. In the context of touchscreen

devices, gestures are intentional finger movements, such as

swipes, taps, pinches, and complex patterns, used to perform

specific commands or actions. These gestures act as a bridge

between human intent and machine interpretation, enabling

seamless interaction with digital interfaces [2].

Gesture recognition is the process of identifying and

interpreting gestures from input data. In touchscreen systems,

this typically involves analyzing the trajectory of finger

movements or shapes drawn on the screen. The process often

mailto:1buege.putra@gmail.com
mailto:13523037@std.stei.itb.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

consists of two stages:

1. Feature Extraction

Converting raw input (e.g., images or coordinates) into a

mathematical representation.

2. Classification

Comparing the extracted features against predefined

gesture templates to determine the best match.

B. Matrix

A matrix is a two-dimensional array of numbers arranged in

rows and columns. Formally, a matrix 𝑀 with 𝑚 rows and 𝑛

columns is represented as:

𝑀 = [

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛

𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚,1 𝑎𝑚,2 ⋯ 𝑎𝑚,𝑛

] (1)

Matrix can be manipulated by operations similar to algebra.

One of the operation relevant to this paper is scalar

multiplication. Matrix scalar multiplication involves

multiplying each element of the matrix by a scalar value. Given

a matrix 𝑀 and a scalar 𝑘, the resulting matrix is:

𝑘 ∙ 𝑀 =

[

𝑘 ∙ 𝑎1,1 𝑘 ∙ 𝑎1,2 ⋯ 𝑘 ∙ 𝑎1,𝑛

𝑘 ∙ 𝑎2,1 𝑘 ∙ 𝑎2,2 ⋯ 𝑘 ∙ 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑘 ∙ 𝑎𝑚,1 𝑘 ∙ 𝑎𝑚,2 ⋯ 𝑘 ∙ 𝑎𝑚,𝑛]

(2)

Matrices are widely used to represent various types of data,

including images and transformations, in both mathematical and

computational contexts.

In the case of images, each element of a matrix corresponds

to a pixel, with its value representing the intensity of the pixel.

In grayscale images, this intensity value typically ranges from 0

(black) to 255 (white), with intermediate values representing

varying shades of gray. For binary images, where the only colors

present are black and white, pixel values are limited to 0 (black)

and 1 (white), simplifying the representation.

(a) Grayscale image

(b) Binary image

Fig. 1. Pixel values in images represented as matrix

Source: [3]

When resizing images, techniques like bilinear interpolation

are commonly used to preserve image quality. Bilinear

interpolation resamples the image by estimating the value of a

pixel in the resized image through a weighted average of the four

nearest pixels in the original image. This approach helps to

ensure smooth transitions and maintain the shape and structure

of the gesture, which is crucial during preprocessing for gesture

recognition.

C. Vector

A vector is a mathematical object that represents both

magnitude and direction. It is expressed as an ordered list of

numbers, called components, each of which corresponds to a

specific direction in a given space. In 𝑛-dimensional space (Rn),

a vector 𝐯 is written as:

𝐯 = [𝑣1, 𝑣2, … , 𝑣𝑛] (3)

Each component 𝑣𝑖 is a scalar that indicates the magnitude of

the vector in the direction of the corresponding axis in the space.

For example, in a 2D space, a vector 𝐯 = [𝑣1, 𝑣2] represent a

direction in the 𝑥-axis and 𝑦-axis, respectively. Similarly, in a

3D space, a vector 𝐯 = [𝑣1, 𝑣2, 𝑣3] represent a direction in the

𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively.

(a) Vector in R2 space

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

(b) Vector in R3 space

Fig. 2. Vector in Euclidean spaces

Source: [4]

Vectors exist within a vector space, which is a set of vectors

that can be added together and multiplied by scalars while still

remaining within the same space. A vector space V must satisfy

certain properties [5]:

1. Closure

The result of addition and scalar multiplication of vectors

must be within the same space. If 𝐮, 𝐯 ∈ V and 𝑘 is a

scalar, then:

𝐮 + 𝐯 ∈ V (4)

𝑘𝐮 ∈ V (5)

2. Commutativity

Vector addition must be commutative, meaning for all

𝐮, 𝐯 ∈ V:

𝐮 + 𝐯 = 𝐯 + 𝐮 (6)

3. Associativity

Vector addition must be associative, meaning for all

𝐮, 𝐯, w ∈ V:

𝐮 + (𝐯 + 𝐰) = (𝐮 + 𝐯) + 𝐰 (7)

4. Identity

For all 𝐮 ∈ 𝑉, there exist 𝟎 identity vector and scalar 1

such that:

𝐮 + 𝟎 = 𝟎 + 𝐮 = 𝐮 (8)

1𝐮 = 𝐮 (9)

5. Inverse

For each 𝑢 ∈ 𝑉, there exists −u ∈ V, such that:

𝐮 + (−𝐮) = (−𝐮) + 𝐮 = 𝟎 (10)

6. Distributivity

Vector addition and scalar multiplication must hold

distributive properties. For all 𝐮, 𝐯,𝐰 ∈ V and 𝑘,𝑚 is

scalars, then:

𝑘(𝐮 + 𝐯) = 𝑘𝐮 + 𝑘𝐯 (11)

(𝑘 + 𝑚)𝐰 = 𝑘𝐰 + 𝑚𝐰 (12)

𝑘(𝑚𝐮) = (𝑘𝑚)𝐮 (13)

One of the fundamental operations in vector is scalar

multiplication, which involves multiplying each component of a

vector by a scalar. Given a vector 𝐯 = [𝑣1, 𝑣2, … , 𝑣𝑛] and a

scalar 𝑘, the operation results in a new vector:

𝑘 ⋅ 𝐯 = [𝑘 ⋅ 𝑣1, 𝑘 ⋅ 𝑣2, … , 𝑘 ⋅ 𝑣𝑛] (14)

This operation scales the vector, changing its magnitude

without affecting its direction. Scalar multiplication is crucial

for transforming vectors or normalizing them to unit length in

various applications.

Another fundamental vector operation is the dot product (or

scalar product) of two vectors, which provides a measure of their

similarity. It is defined as the sum of the products of their

corresponding components. For two vectors 𝐀 = [𝑎1, 𝑎2, … , 𝑎𝑛]
and 𝐁 = [𝑏1, 𝑏2, … , 𝑏𝑛] the dot product is given by:

𝐀 ∙ 𝐁 = ∑𝑎𝑖𝑏𝑖

𝑛

𝑖=1

(15)

The dot product has several important properties. It is

commutative, meaning 𝐀 ⋅ 𝐁 = 𝐁 ⋅ 𝐀, and distributive over

vector addition. It is also bilinear, meaning it is linear in each of

its arguments.

Geometrically, the dot product of two vectors can also be

expressed as:

𝐀 ⋅ 𝐁 = ‖𝐀‖‖𝐁‖ 𝑐𝑜𝑠 θ (16)

Where ‖𝐀‖ and ‖𝐁‖ are the magnitudes (or norms) of the

vectors, and θ is the angle between them. If the vectors are

parallel, the dot product is maximized. If they are orthogonal,

the dot product is zero, indicating no similarity.

The norm of a vector, also known as the magnitude or length,

is a measure of its size. The most commonly used type of norm

is the Euclidean norm, which is defined as:

‖𝐯‖ = √∑𝑣𝑖
2

𝑛

𝑖=1

(17)

This norm calculates the straight-line distance from the origin

to the point represented by the vector in the space. The norm of

two vectors follow triangle inequality, meaning ‖𝐯 + 𝐰‖ ≤
‖𝐯‖ + ‖𝐰‖ for any vectors v and w.

D. Information Retrieval System

Information retrieval (IR) system is a framework designed to

retrieve relevant information from a dataset in response to a

query. Examples include search engines and document matching

systems. In the context of gesture recognition, the task of

classifying gestures is analogous to information retrieval: the

input gesture serves as the "query," and the system matches it to

the most relevant template from a database.

A key concept in IR systems is the measurement of similarity

between the query and the available documents. One common

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

metric used to compare the similarity of two vectors is cosine

similarity. For query vector 𝐐 and document vector 𝐃, it is

defined as [6]:

sim(𝐐,𝐃) = 𝑐𝑜𝑠 θ =
𝐐 ⋅ 𝐃

‖𝐐‖‖𝐃‖
(18)

This metric quantifies how closely the two vectors align in

terms of their direction. The value ranges from −1 to 1, where

values closer to 1 indicates greater similarity, and values closer

to −1 indicates greater dissimilarity.

A value of 1 indicates that the vectors are identical in

direction, meaning they have maximum similarity. A value of 0

suggests that the vectors are orthogonal, meaning there is no

similarity between them. Conversely, a value of −1 indicates

that the vectors point in opposite directions, signifying

maximum dissimilarity.

Fig. 3. A query vector 𝐐 compared to two document vectors 𝐃𝟏

and 𝐃𝟐

Source: [6]

Thus, cosine similarity provides a useful measure for

comparing vectors in a variety of applications, including gesture

recognition, where it helps assess how similar a query gesture is

to predefined gesture templates.

III. METHODOLOGY

The proposed gesture recognition system presented in this

paper aims to classify touchscreen gestures using cosine

similarity as the core metric for matching. The methodology

involves a series of systematic stages, including dataset

preparation, preprocessing, feature extraction, and

classification, each contributing to the overall recognition

process. These stages are carefully designed to ensure the

system accurately identifies input gestures by matching them

with the most relevant templates in the database.

A. Dataset Preparation

The foundation of any recognition system lies in its dataset.

For this study, the dataset are comprised of black-and-white

images, where the white pixels trace the path of the gesture

drawn on a touchscreen. Each gesture is recorded as a PNG

image with a resolution of 240 × 150 pixels and an 8-pixel-wide

gesture path. This resolution and path size were chosen to strike

a balance between accurately representing the gesture drawn and

minimizing storage requirements. Standardizing the image size

eliminates inconsistencies that could arise from varying

dimensions, ensuring uniformity across the dataset. For

simplicity and proof of concept, all gesture images in this study

were created using Microsoft Paint, providing a controlled

environment for generating the dataset.

B. Preprocessing

Once the dataset is prepared, the next stage is preprocessing,

which transforms raw gesture images into a structured format

suitable for subsequent analysis. In this stage, each gesture

image in the dataset is converted into a binary image matrix,

where the white pixels are represented with the value of 1 and

the black pixels are represented with the value of 0. This binary

representation ensures simplicity and efficiency in processing.

To further structure the image, the matrix is divided into equal-

sized grid cells. This grid-based segmentation is essential for the

next stage, as it facilitates the extraction of spatial information

by dividing the image into smaller, manageable regions.

C. Feature Extraction

Feature extraction is the stage where the meaningful

characteristics of the gestures are distilled into a numerical

representation. Using the grid-based representation from

preprocessing, the system calculates the proportion of white

pixels within each grid cell. This process transforms the binary

image matrix into a grid of density values that capture the spatial

distribution of the gesture. The grid is then flattened into a

feature vector, where each component maps to a specific region

of the gesture image. This high-dimensional vector preserves the

general spatial structure of the gesture, allowing the system to

compare gestures effectively. By condensing the gesture’s

details into a density format, the system reduces the complexity

of raw images while retaining the information necessary for

accurate classification.

D. Classification

With the feature vectors obtained from the feature extraction

stage, the system proceeds to classify input gestures by

comparing their feature vectors to those of the template gestures

in the database. The core of this classification process lies in

cosine similarity, a metric that measures the angular similarity

between two vectors. For each input gesture, cosine similarity

evaluates the alignment between its feature vector and the

feature vectors of all template gestures. A similarity score is

produced for each comparison, ranging from −1 to 1, with score

closer to 1 indicates a high degree of similarity, while a score

closer to −1 indicates significant dissimilarity. The template

gesture with the highest similarity score is selected as the

predicted class. To account for poorly matched gestures, a

threshold is applied. If the highest similarity score falls below

this threshold, the input gesture is classified as "unrecognized."

This mechanism helps to prevent erroneous classifications in

cases where the input gesture does not closely resemble any of

the stored templates.

E. Evaluation

The final stage of the methodology involves evaluating the

performance of the system. Accuracy is assessed by comparing

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

the predicted gesture labels against the ground truth labels for a

diverse set of test gestures. The evaluation dataset includes

variations in gesture styles and drawing consistency to simulate

real-world scenarios and test the system’s ability to generalize.

This evaluation shows the system's effectiveness and its

potential for practical applications.

IV. IMPLEMENTATION

The implementation of the gesture recognition system is

developed using Python, using libraries such as OpenCV for

image processing and NumPy for numerical computations. The

system is modular, comprising several key functions that

perform preprocessing, feature extraction, classification, and

evaluation.

A. Preprocessing Gesture Images into Grids

Preprocessing begins by converting gesture images into a

binary format and dividing them into grids. The function

preprocess_image_into_grids takes an image filepath and

a specified grid size as inputs. It loads the image in grayscale,

binarizes it (assigning pixel values of 0 or 1), and divides it into

a 4D array of grid cells. This process ensures a consistent

representation of gesture images for subsequent feature

extraction. This function ensures uniformity in image

dimensions and prepares the data for extracting spatial features.

def preprocess_image_into_grids(filepath,

 grid_size):

 image = cv2.imread(filepath,

 cv2.IMREAD_GRAYSCALE)

 if image is None:

 raise FileNotFoundError(f"Image not found

 at {filepath}")

 _, binary_image = cv2.threshold(image, 127, 1,

 cv2.THRESH_BINARY)

 height, width = binary_image.shape

 if (height % grid_size[0] != 0 or width %

 grid_size[1] != 0):

 raise ValueError(f"Image dimensions({height}

 , {width}) must be divisible

 by grid size {grid_size}")

 cell_height = height // grid_size[0]

 cell_width = width // grid_size[1]

 grid = binary_image.reshape(cell_height,

 grid_size[0],

 cell_width,

 grid_size[1])

 return grid

Fig. 4. Code snippet for the preprocessing function

B. Extracting Features from Gesture Grids

The function extract_features converts the preprocessed

grid into a feature vector. It computes the sum of white pixels in

each grid cell and flattens the resulting 2D array into a 1D

feature vector. This vector represents the spatial structure of the

gesture and is crucial for classification.

def extract_features(grid):

 density_grid = grid.sum(axis=(1, 3))

 vector = density_grid.flatten()

 return vector

Fig. 5. Code snippet for feature extraction function

By summarizing pixel densities within grid cells, this method

reduces the complexity of raw image data while retaining

essential spatial information.

C. Gesture Recognition Using Cosine Similarity

To classify gestures, the function cosine_similarity
computes the similarity between two feature vectors. It

calculates the cosine of the angle between the vectors, with

values closer to 1 indicating higher similarity.

def cosine_similarity(vector1, vector2):

 dot_product = np.dot(vector1, vector2)

 magnitude = np.linalg.norm(vector1) *

 np.linalg.norm(vector2)

 return dot_product / magnitude

Fig. 6. Code snippet for cosine similarity function

The recognize_gesture function uses this metric to

compare the feature vector of an input gesture with template

vectors stored in a dictionary. The gesture with the highest

similarity score is identified as the recognized gesture.

def recognize_gesture(input_filepath,

 gesture_vectors,

 grid_size):

 grid = preprocess_image_into_grids(

 input_filepath, grid_size)

 input_vector = extract_features(grid)

 best_match = None

 best_score = -1

 scores = []

 for gesture_id, template_vector in

 gesture_vectors.items():

 score = cosine_similarity(input_vector,

 template_vector)

 scores.append(float(score.round(2)))

 if score > best_score:

 best_match = gesture_id

 best_score = score

 return best_match, best_score, scores

Fig. 7. Code snippet for input gesture recognition

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

D. Loading Gesture Templates

The load_gesture_vectors function preprocesses

template gestures stored in a directory. It converts each gesture

image into a feature vector and maps it to a unique gesture ID.

This function creates a database of gesture templates, enabling

efficient comparison during recognition.

def load_gesture_vectors(data_dir, grid_size):

 gesture_vectors = {}

 for filename in os.listdir(data_dir):

 if filename.endswith(".png"):

 gesture_id = os.path.splitext(filename)[0]

 filepath = os.path.join(data_dir, filename)

 grid=preprocess_image_into_grids(filepath,

 grid_size)

 feature_vector = extract_features(grid)

 gesture_vectors[gesture_id]=feature_vector

 return gesture_vectors

Fig. 8. Code snippet for loading gesture templates function

E. Evaluating System Performance

To evaluate the system, a loop iterates through grid sizes,

preprocesses gestures from input and template directories, and

calculates accuracy for each grid size. Recognition accuracy is

determined by comparing the predicted gesture IDs with the

ground truth.

accuracies = []

for i in range(1, 151):

 if 150 % i != 0:

 continue

 for j in range(1, 241):

 if 240 % j != 0:

 continue

 grid_size = (i, j)

 data_dir = "./template"

 input_dir = "./input"

 gesture_vectors = load_gesture_vectors(

 data_dir, grid_size)

 total, correct = 0, 0

 for filename in os.listdir(input_dir):

 input_filepath = os.path.join(input_dir,

 filename)

 recognized_gesture, similarity, scores =

 recognize_gesture(input_filepath,

 gesture_vectors,

 grid_size)

 print(f"Input {filename} recognized as

 gesture {recognized_gesture}.

 (Similarity score:

 {similarity:.2%})", end="\t")

 for score in scores:

 print(score, end="\t")

 print()

 total += 1

 if filename[0] == recognized_gesture:

 correct += 1

 accuracy = correct / total

 print(f"Accuracy: {accuracy:.2%}

 ({correct}/{total}) for grid size

 {grid_size[0]}x{grid_size[1]}")

 accuracies.append((grid_size, accuracy))

Fig. 9. Code snippet for the main driver

V. ANALYSIS

The system rely heavily on the preprocessing stage to

transform raw input into a format that allows for accurate feature

extraction and classification. To achieve this, the input gesture

images are first binarized and divided into grids of specified

size. Fig. 10. is an excerpt from the preprocessing pipeline,

showcasing a sample gesture template and its corresponding

input gesture used for evaluation.

(a) Template path

(b) Input path

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Fig. 10. A pair of template and input gesture image, subdivided

by 30 × 20 grid after preprocessing pipeline

After preprocessing, the gesture image undergoes feature

extraction, where each grid cell is summed to compute its pixel

density. This step outputs a compact feature vector representing

the gesture, capturing both the structural and spatial

characteristics necessary. The resulting feature vector is then

compared to a database of precomputed gesture templates using

cosine similarity as the matching metric. Fig. 11. demonstrates

the image post-feature extraction using grid size of 30 × 20,

where the grid cell intensities reflect the distribution of the path

pixels across the image.

(a) Template path

(b) Input path

Fig. 11. A pair of template and input gesture image converted

into density matrix after feature extraction pipeline

To determine the optimal grid size for maximizing

recognition accuracy, every combination of grid sizes is tested

extensively. Grid configurations range from highly granular and

small sizes, such as 1 × 1 and 2 × 2, to coarse and large sizes

like 150 × 240. Each configuration generates a unique feature

vector representation, impacting the system’s ability to

distinguish between gestures. Below is the table of 5 top-

performing and worst-performing grid sizes, along with graph

displaying every combination performance, which displays the

balance between granularity and accuracy.

Table 1. 5 top-performing and worst-performing grid sizes

Grid Size
Correct

(out of 56 inputs)

Accuracy

(%)

Top-performing

30 x 20 44 78.57

30 x 24 43 76.79

30 x 48 43 76.79

15 x 20 40 71.43

25 x 20 40 71.43

Worst-performing

75 x 120 19 33.93

150 x 120 17 30.36

150 x 60 15 26.79

75 x 240 11 19.64

150 x 240 8 14.29

Fig. 12. Scatter plot of various grid sizes and its resulting

accuracies

From Table 1 and Fig. 12, it is evident that grid sizes in the

small-to-mid range such as 30 × 20, achieving an accuracy of

78.57%, outperform both overly coarse and excessively granular

configurations. This success can be attributed to their ability to

preserve crucial structural details without introducing

segmentation noise. In comparison, overly coarse grids, such as

150 × 240, fail to capture sufficient detail, leading to worse

accuracy. Small and granular grid sizes provide decent accuracy,

despite resulting in over-segmentation and amplifying noise.

VI. CONCLUSION

Despite the promising results observed with certain grid sizes,

the overall accuracy levels highlight that the system, in its

current state, is not reliable enough for consistent, day-to-day

usage. Even the best-performing grid size, 30 × 20, achieves an

accuracy of only 78.57%, which falls short for practical

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

applications requirement where high reliability is essential.

Without further enhancements to both preprocessing and

classification methodologies, the system risks frequent

misclassifications, making it unsuitable for environments that

demand precision and consistency.

VII. ACKNOWLEDGMENT

The author sincerely expresses gratitude towards the lecturers

of IF2123 Geometric and Linear Algebra, particularly Ir. Rila

Mandala, M.Eng., Ph.D., the lecturer for class K-01, for his

continuous guidance and expertise throughout the semester. The

author also expresses gratitude to their friends and family for

their endless support during the period of writing this paper.

REFERENCES

[1] Q. Dang, “Touchscreen: An engineered harmony between humans and

machines - USC viterbi school of engineering,” USC Viterbi School of

Engineering - USC Viterbi School of Engineering,

https://illumin.usc.edu/touchscreen-an-engineered-harmony-between-

humans-and-machines/ (accessed Jan. 1, 2025 at 17.11 WIB).

[2] “Gestures,” Apple Developer Documentation,

https://developer.apple.com/design/human-interface-guidelines/gestures

(accessed Jan. 1, 2025 at 18.42 WIB).

[3] R. Munir, “Review Matriks”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-01-Review-Matriks-2023.pdf (accessed Dec. 30, 2024 at

12.44 WIB).

[4] R. Munir, “Vektor di Ruang Euclidean (bagian 1)”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-

2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf (accessed

Dec. 30, 2024 at 13.30 WIB).

[5] R. Munir, “Ruang Vektor Umum (bagian 1)”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-15-Ruang-vektor-umum-Bagian1-2023.pdf (accessed Dec.

30, 2024 at 14.10 WIB).

[6] R. Munir, “Aplikasi Dot Product pada Sistem Temu-balik Informasi

(Information Retrieval System)”,

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-14-Aplikasi-dot-product-pada-IR-2023.pdf (accessed Dec.

30, 2024 at 17.58 WIB).

STATEMENT

I hereby declare that the paper I have written is my own work,

not an excerpt or translation of someone else's paper, and is not

plagiarized.

Bandung, 2 January 2025

Buege Mahara Putra

13523037

